The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods.

نویسنده

  • A D Murphy
چکیده

Research on identified neurons during the last quarter century was forecast at a conference in 1973 that discussed "neuronal mechanisms of coordination in simple systems." The focus of the conference was on the neuronal control of simple stereotyped behavioral acts. Participants discussing the future of such research called for a comparative approach; emphasis on structure-function interactions; attention to environmental and behavioral context; and the development of new techniques. Significantly, in some cases amazing progress has been made in these areas. Major conclusions of the last quarter century are that so-called simple behaviors and the neural circuitry underlying them tend to be less simple, more flexible, and more highly modulated than originally imagined. However, the comparative approach has, as yet, failed to reach its potential. Molluscan preparations, along with arthropods and annelids, have always been at the forefront of neuroethological studies. Circuitry underlying feeding has been studied in a handful of species of gastropod molluscs. These studies have contributed substantially to our understanding of sensorimotor organization, the hierarchical control of behavior and coordination of multiple behaviors, and the organization and modulation of central pattern generators. However, direct interspecific comparisons of feeding circuitry and potentially homologous neurons have been lacking. This is unfortunate because much of the vast radiation of the class Gastropoda is associated with variations in feeding behaviors and feeding apparatuses, providing ample substrates for comparative studies including the evolution of defined circuitry. Here, the neural organization of feeding in the snail, Helisoma, is examined critically. Possible direct interspecific comparisons of neural circuitry and potentially homologous neurons are made. A universal model for central pattern generators underlying rasping feeding is proposed. Future comparative studies can be expected to combine behavioral, morphological, electrophysiological, molecular and genetic techniques to identify neurons and define neural circuitry. Digital resources will undoubtedly be exploited to organize and interface databases allowing illumination of the evolution of homologous identified neurons and defined neural circuitry in the context of behavioral change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Observations on the Serotonergic Cerebral Neurones of Helisoma (mollusca, Gastropoda): the Case for Homology with the Metacerebral Giant Cells

A bilaterally symmetrical pair of serotonergic neurones in the cerebral ganglia of the snail Helisoma trivolvis has major features in common with the serotonergic cerebral cells of other gastropods, including those of Helix and Aplysia. The cells were found to receive a high level of inhibitory synaptic activity which is important in determining their firing level. In the cells of isolated cere...

متن کامل

Propagation of action potentials through electrotonic junctions in the salivary glands of the pulmonate mollusc, Helisoma trivolvis.

The secretory cells of the salivary glands of the snail, Helisoma trivolvis, exhibit regenerative, overshooting action potentials whose ampliture may exceed 100 mV. The salivary glands consist of paired, tubular, epithelial structures with acinar outpocketings. The secretory cells display extensive electrical coupling which allows action potentials to propagate along the glandular epithelium. S...

متن کامل

Nitric Oxide Regulates Neuronal Activity via Calcium-Activated Potassium Channels

Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during ...

متن کامل

Distribution and Conservation Status of the freshwater gastropods of Nebraska

This survey of freshwater gastropods within Nebraska includes 159 sample sites and encompasses the four primary level III ecoregions of the State. I identified sixteen species in five families. Six of the seven species with the highest incidence, Physa gyrina, Planorbella trivolvis, Stagnicola elodes, Gyraulus parvus, Stagnicola caperata, and Galba humilis were collected in each of Nebraska’s f...

متن کامل

Dopamine suppresses neuronal activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels.

Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in neurobiology

دوره 63 4  شماره 

صفحات  -

تاریخ انتشار 2001